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NUMERICAL SIMULATION OF FRACTURE

by L. G. Margolin and T. F. Adams

Earth and Space Science Division

Logs Alamos National Laboratory
Los Alamos, New Mexico

ABSTRACT

The Bedded Crack Model (BCM) is a constitutive model for
brittle materials. It is based on effective modulus theory and
makes use of a generalized Griffith criterion for crack growth. It
is used in a solid dynamic computer code to simulate atress wave
propagation and fracture in rock. A general description of the
model is given und then the theoretical basis for it is presented.
Some effects of finite cell size in numerical simuiations are

discussed. The use of the BCM is illustrated in simulations o)
explosive fracture of oil shale. There is generally good agreement
betwean the calculations and data from field experiments.

INTRODUCTION

Numerical simulation of stress wave propagation and fracture in

rock is a toplc of great current interest and importance.
Applications of numerical programs range from in situ techniques for

recovery of energy and mineral resources to nuclear weapons testing,
and even to the study of earthquakes.

Numerical simulation requires a solid dynamic computer :ode
to simulate stress wave propsgation and a constitutive model to
repregent the material response, including fracture. The Fedded
Crack Model (BCM) is a constitutive model that has been developed
for brittle materials. It im based on a microphysical piciure in
which the evolution of a statistical distribution of penny shaped

cracks is calculated.

The BCM addresses two questions. For a wmaterial containing
penny shaped cracks:

1) how does the siress field affect the cracks - thins {s, when can
cracks grow?
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2) how do the cracke affect the material properties - that {is,
what are the effective elastic moduli of a cracked material?

Intrinsic to the model is the statistical framework used to <Zescribe
the distribution of cracks as a function of size.

In the next section, we describe the theoretical basis of the
model. We then investigate sgome effects of finite cell size in
numerical simulation of stress wave »propagation. Finally, we

illustrate the use of the BCM in a stress wave code to simulate
blasting in oil shale. In general, the calculations agree with data
from field experiments.

THEORETICAL BASIS

Griffith Criterion

The question of when a crack can grow is answered by a
generalized Griffith criterion. The criterion says that a crack
will grow whenever that growth reduces the potential energy of the
vrack and the material that contains it. Griffith (1920) applied

this criterion to the case of a two-dimensional crack (slit) in
normal tension. We have generalized CGriffith’s analysis to three-
dimensional (penny shaped) cracks in the x-y plane. A crack of
radius ¢ in normal tension will grow 1if

2 2 2 2 4nTE
+H= + > ——2
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Here V 1is Poigeon’s ratio, E is Young’s modulus and T is the surface
tension. Equation 1 shows that in a given stress field, there 18 a
critical crack size. Cracks bigger than the criti:al size grow,

while smaller cracke dare stable. The equation also shows that the
effect of shear stress is to reduce the critical crack size.

The criterion can also be applied to closed cracks (normal
compression). In :his came, friction betweun the crack iaces
becomes important (McClintock and Walak, 19€2). The criterion for
closed cracks hams the form

2\ [,2 2 o 2 OATTE ,

Here 11 {s thc dynamic coefficient of friction &«. 1 1, represents a
cohesion.

F{fective Elantic Modulf

The effective modull are found frow static solutfons for
strain am a function of applied stresa in a randomly cracked body.
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The basic assumption 1is that the total strain can be written as the
sum of the strain in the material of the body plus the additional
gtrain due to opening and sliding of the cracks. The additional
strajin due to the cracks is linear in the applied stress 1f crack
interactions are ignored (Hoenig, 1979). Thus we can write

13 ) @ . (3)

€37 My Mgk %
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Here M, .., is the modulus of the uncracked material. ﬁijkl is pro-
portional to the third moment of the crack distribution.

The crack size distribution changes with time as the cracks
grow. The constitutive law then is

4o, )

TR

de di
\ __1jmn
1kl ( dt ~ T at ) % (4)

where C = (M + ﬁ)‘l. Thus, the constitutive relation has the form
of a Maxwell solid with a variable relaxation time.

Crack Statistics

The 1{Initial distribution of <cracks 1s assumed to be
exponential: the number of cracks with radius greater than c 1is

No exp(-c/€). ‘'The constant € 18 a characteristic length scale of
the initial distributi>n and N, 18 the total number of cracks per
unit volume. The expounential dependence 18 not crucial to the

model, but 1is convenient and is consistent with data for many rocka
(Shockey et al., 1974).

At the beginning of each computational cycle, we ure the
Griffith criterion (egquation |l or 2) to determine which cracks, (f
any, may grow. In each cell, based on the atressa, there is a
critical size. In principie then, all cracks larger than the
critical mize grow at tha asymptotlc crack velocity for the duration
of the cycle. Even for relatively simple stress historles, the
critical crack size would have to be saved for each cell for each
cycle. In the BCM, this problem {A overcome by using a two
paramcter flt to represent the distribution functlon. Crack growth
{s not allowed until the critical size (len) reachea its minimum
value. Ar thia point, all cracks larger than this value ot Cmin 8T
agmumed tuo grow. The unatable cracks contlnue to grow untll the
amalleat active cracks no longer nsatimfy the Griffith criterfon.
The time interval of active growth {As one parameter and c in the
Accond.

min
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MESH EFFECTS

The finite size of a computational cell leads to two problems,
both associated with numerical dirffusion. First, there is the
diffusion of fracture shead of the wave. As a steep wave propagates
through a cell, the cracks behind the peak cause a degradation of
the effective elastic moduli of the material. Since there 1is only
one set of moduli for the celi, the wave begins to propagate through
partially fractured material, leading to too much attenuation. The
problem can be characterized in terms of two time acales. One scale
is physical, representing the time for the material to suffer sig-
nificant reduction of the effective moduli. The sgecond scale is
numerical, the transit time of the wave through the cell, i.e., the
cell size divided by a sound speed. When the numerical time ecale
becomes comparable to the physical time scale, numerical diffusion
of the effects of fracture becomes significant.

The second problem ie associated with the use of artificial
viscosity to represent shock waves in the mesh (Wilkins, 1980). The
artificial viscosity emears the numerical precursor to the shock

over three or four computational cells. Because all cracks grow
with the eame asymptotic speed (Dunlaney and Brace, 1960), the shape

of the precursor plays an important role in determining the amount

of fracture ahead of the wave peak. The real riase time of the pulse
is probably much less than is simulated with aritifical viecoseity.

In the BCM, we prevent fracture in the precursor by not
allowing crack growth until the wave peak 1s detected. This
corresaponds to as3uming a very oharp wave front, so it
underestimates slightly the attenurtion. This treatment reduces the
effect of the first problem, the diffusion of fracture. Wheu the
cells are large th¢ attenuation may be greatly underestimated.

The effect of fracture in one-dimensionel wave propcgation is
to cause an exponential attenuation (Piau, 1979). However, the
attenuation coefficient is senditive to mesh sapacing if the cells
are too large. This is demonstrated in Fig- 1, wvhere we plot the
calculated attenuation coefficient, 4, against cell size for a one-
dimensional problem. For small cells, the atteauvation
asymptotically apprnaches a constant value. The figure shows that a
critical point occurs when pAx=zl. This 1e consistent with the
criterion for numerical diffusion since (uc")'1 is a ime for
fracture and (Ax/c.) is the transit time of n cell. Here c, is a
sound speed. If it is not possible to use sufficiently smu.ll cells,

a shock fitting technique that allows subgrid resolution uvf the wave
must be employed.

APPLICATION TO OIL SHALF

The BCM has been used with the two-dimensional atress wave
code, YAQUI, to simulate fracture of oil shale by high explosives.
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YAQUI is a finite difference "ALE" (Arbitrary Lagrangian-Eulerian)
code (Amasden, Ruppel, and Hirt 1980). The ALE formulation allows
the 01l shale to be followed in Lagrangian coordinates, preserving
material interfaces, while the high explosive gases are followed in
nearly BEulerian coordinates as they rush up the borehole past the
oil shale.

The version of the BCM used for the calculations assumes that
the penny shaped cracks all 1lie in planes parallel to the bedding
planes. This is a reasonable first approximation, since the bedding
planes in o0i’ shale are planes of weakness (Youash, 1969).
Reasonable values are assumed for the initial crack density and mean
crack size. These quantiti{es are measurable, in principle, in the
laboratory, although studies at SRI (Murri et al., 1977) have shown
that it is difficult to identify the pre-existing cracks and flaws
in direct microscopic observations in o1l stale. The elastic
constants for the rock matrix in which the cracks are embedded are
taker from published fits to laboratory data (Johnson, 1979).

The YAQUI code with the BCM constitutive model has been used
to esimulate a series of o0il shale blasting experiments that was
coaducted in the Colony Mine near Parachute, CO. These experiments
were done in cooperation with the Colony Development Corporation and
Atlantic Richfield. Experiment 79.10 4involved 24.7 kg of a
commercial ammonium nitrate/fuel oil explosive (ANFO) emplaced in a
0.15 m-diameter borehole drilled vertically into the mine floor.
The charge was l.7 m in length and the depth to the bottom of the
charge was 3.3 m. The charge wac detonated from the bottom.

Experiment 79.10 produced a crater filled with loose rubble.
The crater was suhsequently excavated and profiles of the crater
vere measured for comparison with the calculations. The predicted
fracture distribution 3.0 m-sec after the firing of the detonator ie
shown in Fig. 2. A typical measured cross section for the 79.10
crater 1is also shown in this figure. The predicted extent of
fracture at the free surface agrees :ell with the width of the
crater 1in the field. The code also predicta a large amount of
fracture beneath che observed crater. However, the crater is not
just the region where cracks have grown, but vhere complete
fragmentation and tumbling of the rubble has occurred as well.
Thus, we expect the observed crater to be shallowrr, since the
broken rock at depth is iocked in place and does not acquire upward
momentum.

It {18 instructive to compare the predicted fracture for
experiment 79.i0 with the observed crater profile for experiment
79.12. That experiment consisted of four charges, each of which was
epproximately the same in aize and depth of burial as the single
cheige in experiment 79.10. The four charges were srranged fn a 3.2
m square pattern. A typical orofile of the experiment 79.12 crater
(alonz one aside of the pattern) is shown in Fig. 3, along with the
predicted tracture pattern, centcred on one of the charges.
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There is a good agreement between the predicted fracture and
the observed crater from the surface down to sbout the level of the
bottom of the charge. The effect of having four charges, spaced as
in experiment 79.12, therefore appears not to be an increase in the
extent of breakage, but rather in the total amount of loose and
tunbled rubble. This probably has to do with the occurrence of
multiple shocks and the way the high pressure explosive product
gases penetrate into the shock-induced fracture network. The net
ef{fect 18 to cause the rubble-filled crater to more closely match
the extent of the fractured rock. The calculation shows predicted
fracture below the explosive borehole. This fractured rock will not
be tumbled, even in a multiple borehole experiment, because of ita
location.

Code calculations can also be compared with field data from

acceleration, velocity, and stress gauges. Measurements of peak
vertical velocity at several locations on the free surface were made
in a recent field experiment. That experiment was similar to
experiment 79.10, except that low-density INT replaced ANFO as the
explosive. The predicted and observed peak velocities are plotted
against range from ground zero in Fig. 4. This figure shows good
agreement between the calculations and the observations.
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Fig. 3. TPredicted fracture for Fig. 4. Peak vertical velocity
experiment 79.10 and versus diatance from
observed crater for ground zero.
experiment 79.12.



